Toward Efficient and Accurate Order-Independent Transparency

Ethan Kerzner*
University of Iowa

Chris Wyman
University of Iowa

Abstract

Correctly rendering multi-layered transparent geometry requires
accumulating contributions from multiple fragments per pixel. Dy-
namic A-buffers (e.g., Yang et al’s [2010] per-pixel linked lists)
achieve this by storing and sorting fragments on-the-fly. We intro-
duce two improvements to recent GPU-based interactive A-buffer
techniques. First, our redesigned algorithm uses fewer costly global
atomic operations to construct linked lists. Second, we decou-
ple visibility and shading to reduce memory demands of multi-
fragment rendering.

Keywords: order independent transparency, real-time rendering

1 Introduction and Previous Work

Multi-fragment rendering has three per-pixel steps: identifying
primitive visibility, shading, and accumulating final pixel color.
Yang et al’s [2010] per-pixel linked lists (PPLL) determine visi-
bility in a single rendering pass, storing all fragments in a global
buffer with a global atomic counter controlling write access. In
contrast, the S-buffer [Vasilakis and Fudos 2012] uses two passes.
The first obtains per-pixel fragment counts and allocates contigu-
ous memory for each pixel’s fragments. Memory requirements for
both algorithms scale linearly with fragment count, but the S-buffer
performs faster than PPLLs as it reduces global atomic contention
during list creation and improves spatial coherence of fragment data
when accumulating pixel colors.

2 Reduced Contention Per-Pixel Linked Lists

PPLLs use a global atomic counter to dynamically allocate a linked
list node for each fragment. We propose reducing global contention
by allocating memory per-primitive rather than per-fragment. Our
primitive-allocated linked lists (PALLs) use a conservative bound
of a primitive’s fragment count to allocate memory, reducing frag-
ment shader atomic contention. Fragment shaders then store visi-
bility data inside this region using a linked list structure.

We implemented PALL in OpenGL. The reduced contention in
PALL increases performance: when rendering 1.4 * 10° fragments,
PALL uses 4.95 ms per frame while PPLL uses 5.36 ms. Our sup-
plementary material includes performance metrics that show PALL
scales more efficiently than PPLL as total fragment count increases.
However, PALL’s conservative primitive bound increases memory
usage.

3 The Compact A-Buffer

Existing interactive A-buffers store shading and visibility inside
fragment lists. This saves per-primitive shading data repeatedly in
multiple pixels. Decoupling storage of primitive and fragment data
in our new compact A-buffer significantly reduces memory over-
head. This approach resembles the decoupling proposed by Liktor
and Dachsbacher’s [2012] compact G-buffer.

*e-mail:ethan-kerzner @uiowa.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.

SIGGRAPH 2013, July 21 — 25, 2013, Anaheim, California.

2013 Copyright held by the Owner/Author.

ACM 978-1-4503-2261-4/13/07

US Army Research Laboratory

Christiaan Gribble
SURVICE Engineering

Lee Butler

Our compact A-buffer applies to either linked lists or the S-buffer.
In both cases, rather than replicate per-primitive data in every frag-
ment, we store a primitive ID with each fragment and create a single
buffer of primitive data. When accumulating pixel color, we access
this primitive data to shade each fragment. Although this adds a
layer of indirection to shading computations, decoupling provides
significant memory savings with only minor performance impact.
Memory consumption still scales linearly with fragment count, but
with a strictly lower constant factor as shown in Figure 1.

Memory Footprints of Dynamic A-Buffers
6x 107

u S-buffer
5x107 u Compact S—buffer
4x 107
3x107

2x107

Memory (bytes)

1x107

Wi

0
100000 200000 300000 400000 500000 600000
Fragment Count

Figure 1: Memory usage of regular and compact A-buffers, com-
puted at 1024% resolution with various fragment counts. When
primitive count exceeds fragment count, our compact A-buffer has
a larger memory footprint. However, our compact A-buffer scales
more efficiently as average primitive size increases.

4 Conclusion

We introduced two GPU-based A-buffer optimizations. The
primitive-allocated linked lists reduces global fragment shader con-
tention while computing primitive visibility, resulting in faster per-
formance but increased memory usage. The compact A-buffer de-
couples storage of visibility and shading data, reducing memory
demands at a small performance cost. Metrics and applications of
these techniques are included in our supplementary material.

References

LIKTOR, G., AND DACHSBACHER, C. 2012. Decoupled deferred
shading for hardware rasterization. 143-150.

VASILAKIS, A., AND FuDoS, I. 2012. S-buffer: Sparsity-aware
multi-fragment rendering. Eurographics Symposium on Render-
ing.

YANG, J., HENSLEY, J., GRUN, H., AND THIBIEROZ, N. 2010.
Real-time concurrent linked list construction on the gpu. Com-
puter Graphics Forum 29, 4, 1297-1304.



